
Alternating Optimization for Tensor Factorization
with Orthogonality Constraints: Algorithm and

Parallel Implementation

Paris A. Karakasis

School of Electrical and Computer Engineering

Technical University of Crete, Greece

Email: pkarakasis@isc.tuc.gr

Athanasios P. Liavas

School of Electrical and Computer Engineering

Technical University of Crete, Greece

Email: aliavas@isc.tuc.gr

Abstract—We consider the problem of tensor factorization
in the cases where one of the factors is constrained to have
orthonormal columns. We adopt the alternating optimization
framework and derive an efficient algorithm that is also suitable
for parallel implementation. We describe in detail a distributed
memory implementation of the algorithm on a three-dimensional
processor grid. The speedup attained by a message-passing
implementation of the algorithm is significant, indicating that
it is a competitive candidate for the solution of very large tensor
factorization problems with orthogonality constraints.

Index Terms—tensors, tensor factorization, PARAFAC, orthog-
onality constraints, algorithms, parallel algorithms.

I. INTRODUCTION

Tensors have recently gained great popularity due to their

ability to model multiway data dependencies [1], [2], [3], [4].

Tensor factorizations into latent factors are very important

for numerous tasks, such as feature selection, dimensionality

reduction, compression, data visualization, interpretation and

completion, and are usually computed as solutions of opti-

mization problems [1], [2]. The Canonical Decomposition or

Canonical Polyadic Decomposition (CANDECOMP or CPD),

also known as Parallel Factor Analysis (PARAFAC), and the

Tucker Decomposition are the two most widely used tensor

factorization models.

The PARAFAC model comes with theoretical background

that guarantees essentially unique tensor factorizations under

mild conditions. However, the problem of finding a best rank-

R approximation of tensors of order 3 (three-way), in the

unconstrained case, has no solution, in general [5]. Existence

of an optimal solution is guaranteed if one of the factors

is constrained to have orthonormal columns [6]. Also, the

orthonormally constrained PARAFAC model can be unique

under more relaxed conditions than the unconstrained model

[7]. In this work, we focus on the PARAFAC model with uni-

modal orthogonality constraints.

Alternating Optimization (AO) and All-at-Once Optimiza-

tion (AOO) are among the most commonly used techniques

for tensor factorization [2], [8]. Recent work for constrained

This work was supported by computational time granted from the Greek
Research & Technology Network (GRNET) in the National HPC facility -
ARIS - under project ID pa171201.

tensor factorization/completion includes, among others, [9],

[10], [11], and [12]. In [12], the authors consider constrained

matrix/tensor factorization/completion problems. They adopt

the AO framework as outer loop and use the Alternating

Direction Method of Multipliers (ADMM) for solving the

inner constrained optimization problem for one matrix factor

conditioned on the rest. The ADMM offers significant flexi-

bility, due to its ability to efficiently handle a wide range of

constraints.

In [13], two parallel algorithms for unconstrained ten-

sor factorization/completion have been developed and results

concerning the speedup attained by their Message Passing

Interface (MPI) implementations on a multi-core system have

been reported. Related work on parallel algorithms for sparse

tensor decomposition includes [14] and [15].

A. Contribution

In this work, we focus on large tensor factorization problems

with one of the factors constrained to have orthonormal

columns. Our aim is to derive an efficient algorithm that

is also suitable for parallel implementation. We adopt the

AO framework, and develop an algorithm for the solution of

the aforementioned problem. We describe in detail a paral-

lel implementation of the algorithm on a three-dimensional

processor grid 1 and measure the speedup attained by an MPI

implementation of the algorithm. We observe that the proposed

algorithm is very efficient, in practice.

B. Notation

Vectors, matrices, and tensors are denoted by small, capital,

and calligraphic capital bold letters, respectively; for example,

x, X, and X . R
I×J×K denotes the set of (I × J × K)

real tensors, while R
I×J denotes the set of (I × J) real

matrices. I denotes the identity matrix of appropriate dimen-

sions. S(I,J) =
{
X ∈ R

I×J : XTX = I
}

denotes the Stiefel

manifold formed by all orthonormal J-frames in R
I . ‖ · ‖F

denotes the Frobenius norm of the tensor or matrix argument.

The outer product of vectors a ∈ R
I×1, b ∈ R

J×1, and

c ∈ R
K×1 is the rank-one tensor a ◦ b ◦ c ∈ R

I×J×K with

1The MPI C++ implementation of the algorithm, that we used in our
experiments, is available upon request to the authors.

439

2018 International Conference on High Performance Computing & Simulation

978-1-5386-7879-4/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCS.2018.00076

elements (a ◦ b ◦ c)(i, j, k) = a(i)b(j)c(k). The Khatri-Rao

(columnwise Kronecker) product of compatible matrices A
and B is denoted as A�B and the Hadamard (elementwise)

product is denoted as A�B. Finally, inequality A � B means

that matrix A−B is positive semidefinite.

C. Structure

In Section II, we briefly describe the tensor factorization

problem with uni-modal orthogonality constraints. In Section

III, we briefly describe the Orthogonal Procrustes problem.

In Section IV, we derive the AO algorithm and in Section

V we describe in detail a parallel implementation of the

algorithm. In Section VI, we test the efficiency of the proposed

algorithm with numerical experiments in a parallel computing

environment. Finally, in Section VII, we conclude the paper.

II. TENSOR FACTORIZATION WITH UNI-MODAL

ORTHOGONALITY CONSTRAINTS

Let tensor X o ∈ R
I×J×K admit a factorization of the form

X o = [[Ao,Bo,Co]] =
R∑

r=1

aor ◦ bo
r ◦ cor, (1)

where Ao = [ao1 . . . a
o
R] ∈ R

I×R, Bo = [bo
1 . . .b

o
R] ∈ S(J,R),

and Co = [co1 . . . c
o
R] ∈ R

K×R. We observe the noisy tensor

X = X o + E , where E ∈ R
I×J×K is the additive noise.

Estimates of Ao, Bo, and Co can be obtained by computing

matrices A ∈ R
I×R, B ∈ S(J,R), and C ∈ R

K×R that solve

the optimization problem

min
A,B∈S(J,R),C

fX (A,B,C) , (2)

where fX is a function measuring the quality of the factoriza-

tion. A common choice for fX is

fX (A,B,C) =
1

2
‖X − [[A,B,C]]‖2F . (3)

If Y = [[A,B,C]], then its matrix unfoldings, with respect to

the first, second, and third mode, are given by [3]

YA = A (C�B)T , YB = B (C�A)T ,

YC = C (B�A)T .
(4)

Thus, fX can be expressed as

fX (A,B,C) =
1

2
‖XA −A(C�B)T ‖2F

=
1

2
‖XB −B(C�A)T ‖2F

=
1

2
‖XC −C(B�A)T ‖2F .

These expressions form the basis for the AO algorithm in the

sense that, if we fix two matrix factors, we can update the third

by solving a (potentially constrained) least squares problem.

The update of matrix factor B requires the solution of a least

squares problem with orthogonality constraints.

III. ORTHOGONAL PROCRUSTES

Given two matrices Y ∈ R
N×M and X ∈ R

M×D, the

optimization problem

min
G∈S(N,D)

∥∥Y −GXT
∥∥2

F
, (5)

is known as Orthogonal Procrustes (OP) and has a closed form

solution given by [16], [17]

Gopt = UVT = M
(
MTM

)− 1
2 , (6)

where matrices U ∈ R
N×D and V ∈ R

D×D are given by the

singular value decomposition of matrix M = YX = UΣVT .

A. Computational complexity of the OP problem

For later use, we notice that an efficient way of solving

the OP problem, after calculating matrix M with computa-

tional complexity O (NMD) arithmetic operations and when

min (N,M) > D, is the following algorithm:

1) Calculate MTM, with complexity O
(
ND2

)
;

2) Calculate the eigen-decomposition of MTM = VΣVT

with complexity O
(
D3

)
;

3) Set G = MVΣ−
1
2VT with complexity O

(
ND2

)
.

Thus, the overall complexity is O (
ND2

)
in contrast to

computing the singular value decomposition of matrix M in

O
(
N2D

)
. The most demanding computation of this approach

is the computation of matrix M.

IV. AO UNI-MODAL ORTHOGONAL TENSOR

FACTORIZATION

In Algorithm 1, we present the AO Uni-modal Orthogonal

Tensor Factorization (AO UOTF) algorithm. We start from

point (A0,B0,C0) and solve, in a circular manner, a least

squares problem (via function LS Update) for updating fac-

tors Ak and Ck, while we update factor Bk by solving the

OP problem (via function OP Update).

Updating factors Ak and Ck can be done as follows:

Ak+1 = XA (Ck �Bk)
[(
CT

kCk

)
�

(
BT

kBk

)]−1

= XA (Ck �Bk)
[(
CT

kCk

)
� I

]−1

= XA (Ck �Bk)D
−1
CT

k Ck

(7)

and

Ck+1 = XC (Bk+1 �Ak+1)
[
I�

(
AT

k+1Ak+1

)]−1

= XC (Bk+1 �Ak+1)D
−1
AT

k+1Ak+1
,

(8)

that solve the corresponding least squares problems exploiting

the orthonormality of factor B. For a matrix G, matrix D−1
GTG

denotes the diagonal matrix with elements the inverses of the

corresponding diagonal elements of matrix GTG.

After the factor updates, we use two functions which have

been proven very useful in our experiments, in the sense that

they significantly reduce the number of outer iterations nec-

essary to reach convergence. Function Normalize normalizes

each column of Ak+1 to unit Euclidean norm, putting all

the power on the respective columns of Ck+1. We denote its

440

Algorithm 1: AO UOTF

Input: X , A0, B0, C0.

1 Set k = 0
2 while (1) do
3 Ak+1 = LS Update(XA,Ck �Bk,)
4 Bk+1 = OP Update(XB,Ck �Ak+1)

5 Ck+1 = LS Update(XC,Ak+1 �Bk+1)

6 (ANk+1,C
N
k+1) = Normalize(Ak+1,Ck+1)

7 if (terminating condition is TRUE) then break; endif
8 (Ak+1,Bk+1,Ck+1) = Accelerate(ANk+1,A

N
k ,Bk+1,Bk,C

N
k+1,C

N
k)

9 k = k + 1

10 return Ak, Bk, Ck.

X iA,iB,iC := X
(
(iA − 1)

I

pA
+ 1 : iA

I

pA
, (iB − 1)

J

pB
+ 1 : iB

J

pB
, (iC − 1)

K

pC
+ 1 : iC

K

pC

)
. (9)

output as ANk+1 and CNk+1. Function Accelerate implements

the acceleration technique used in the function parafac of

n-way toolbox [18], briefly described in [19].

We can use various termination criteria for the AO UOTF

algorithm based, for example, on the (relative) change of the

cost function and/or the latent factors.

V. PARALLEL IMPLEMENTATION

In this section, we consider the implementation of the AO

UOTF algorithm in a computing environment with p = pA ×
pB × pC processing elements. In general, the p processors

form a three-dimensional Cartesian grid, with each processor

denoted as piA,iB,iC , for iA = 1, . . . , pA, iB = 1, . . . , pB,

and iC = 1, . . . , pC.

A. Variable partitionings and data allocation

B3
k

A2
k

A3
k C1

k

C2
k

A1
k

B1
k B2

k

Fig. 1. Tensor X , factors Ak , Bk , and Ck , and their partitioning for pA =
pB = 3 and pC = 2.

In order to describe the parallel implementation, we in-

troduce certain partitionings of the factor matrices and the

tensor matricizations. We partition the factor matrix Ak into

pA block rows as

Ak =

[(
A1

k

)T · · ·
(
A

Np

k

)T
]T

, (10)

with AiA
k ∈ R

I
pA
×R

, for iA = 1, . . . , pA. We partition

accordingly the matricization XA and get

XA =
[(

X1
A

)T · · · (XpA

A)
T

]T
, (11)

with XiA
A ∈ R

I
pA
×JK

, for iA = 1, . . . , pA. In a similar

manner, we partition Bk and XB into pB block rows, each of

size J
pB
×R and J

pB
× IK, respectively, and Ck and XC into

pC block rows, each of size K
pC
×R and K

pC
×IJ , respectively.

We partition tensor X into p subtensors, according to the

partitioning of the factor matrices (see Fig. 1), and allocate

its parts to the various processors. Thus, processor piA,iB,iC

receives subtensor X iA,iB,iC , as defined in (9), at the top of

this page.

We assume that, at the end of the k-th outer AO iteration,

a) processor piA,iB,iC knows AiA
k , BiB

k , and CiC
k ;

b) all processors know AT
kAk and CT

kCk (note that, due

the orthogonality constraints BT
kBk = I).

B. Communication Groups

We start by defining certain communication groups, also

known as communicators [20], over subsets of the p pro-

cessors. The communicators are used for the efficient col-

laborative implementation of specific computational tasks, as

explained in detail later.

We define pA two-dimensional processor groups, each in-

volving the pB × pC processors piA,:,:, for iA = 1, . . . , pA
(horizontal layers), with the iA-th processor group used for

the collaborative update of AiA
k . Similarly, we define groups

p:,iB,: for iB = 1, . . . , pB, and p:,:,iC , for iC = 1, . . . , pC,

which are used for the collaborative update of BiB
k and CiC

k ,

respectively.

We define pB×pC one-dimensional processor groups, each

involving the pA processors p:,iB,iC . Each of these groups

is used for the collaborative computation of AT
k+1Ak+1.

Similarly, we define groups piA,:,iC and piA,iB,:, which are

used for the collaborative update of Bk and computation of

CT
k+1Ck+1, respectively.

441

C. Factor Update Implementation

We describe in detail the updates of Ak and Bk. The update

of Ck is similar to the update of Ak.

Collaborative Update of Ak: The update of Ak is achieved

via the parallel updates of AiA
k , for iA = 1, . . . , pA, and

consists of the following stages:

1) Processors piA,:,:, for iA = 1, . . . , pA, collaboratively

compute the I
pA
×R matrix

W̃iA
A := XiA

A (Ck �Bk) , (12)

and the result is scattered among the processors in the

group; thus, each processor in the group receives I
pApBpC

successive rows of W̃iA
A . Term W̃iA

A can be computed

collaboratively because

XiA
A (Ck �Bk) =

pB∑
iB=1

pC∑
iC=1

XiA,iB,iC
A

(
CiC

k �BiB
k

)
,

(13)

where XiA,iB,iC
A is the matricization of X iA,iB,iC , with

respect to the first mode; processor piA,iB,iC knows

XiA,iB,iC
A , BiB

k , and CiC
k , and computes the correspond-

ing term of (13). The sum is computed and scattered

among processors piA,:,: via a reduce-scatter operation.

2) Each processor in the group piA,:,: uses the scattered

part of W̃iA
A and Z̃A = I � CT

kCk, and computes the

updated part of AiA
k+1, via a least-squares update. Then,

the updated parts are all-gathered at the processors of the

group piA,:,:, so that all processors in the group learn the

whole updated AiA
k+1.

3) By applying an all-reduce operation to
(
AiA

k+1

)T
AiA

k+1,

for iA = 1, . . . , pA, on each of the single dimensional

processor groups p:,iB,iC , for iB = 1, . . . , pB and iC =
1, . . . , pC, all p processors learn AT

k+1Ak+1.

Collaborative Update of Bk: The update of Bk is achieved

via the parallel updates of BiB
k , for iB = 1, . . . , pB, and

consists of the following stages:

1) Processors p:,iB,:, for iB = 1, . . . , pB, collaboratively

compute the J
pB
×R matrix

W̃iB
B := XiB

B (Ck �Ak+1) , (14)

by applying an all-reduce operation, since

XiB
B (Ck �Ak+1) =

pA∑
iA=1

pC∑
iC=1

XiA,iB,iC
B

(
CiC

k �AiA
k+1

)
,

where XiA,iB,iC
B is the matricization of X iA,iB,iC , with

respect to the second mode.

2) Processors piA,:,iC , for iA = 1, . . . , pA and iC =
1, . . . , pC, collaboratively compute the R×R matrix

W̃T
BW̃B =

pB∑
iB=1

(
W̃iB

B

)T

W̃iB
B (15)

by applying an all-reduce operation. We notice that at the

end of this step, all p processors know matrix W̃T
BW̃B.

3) Each processor piA,iB,iC , for iA = 1, . . . , pA, iB =
1, . . . , pB, and iC = 1, . . . , pC, computes the updated

partial factor BiB
k+1 as

BiB
k+1 = W̃iB

B

(
W̃T

BW̃B

)− 1
2

. (16)

We note that the Euclidean norms of the columns of

Ak+1 and Ck+1 appear on the diagonals of AT
k+1Ak+1 and

CT
k+1Ck+1, which are known to all processors. Thus, no

additional communication is necessary for the normalization

of the updated matrix factors.
After the normalization step of the (k+ 1)-st AO iteration,

processor piA,iB,iC knows the parts of the normalized factors,

that is, AiAN
k+1 , BiB

k+1, CiCN
k+1 , as well as AiAN

k , BiB
k , and

CiCN
k , and can collaboratively implement the acceleration

mechanism as explained in detail in [19].

D. Communication Cost
We focus on the parallel updates of AiA

k , for iA =
1, . . . , pA, and BiB

k , for iB = 1, . . . , pB, and present results

concerning the associated communication cost. The commu-

nication cost of the update of CiC
k , for iC = 1, . . . , pC, can

be computed by following analogous steps to those used for

the computation of the communication cost of the update of

AiA
k .
We assume that an m-word message is transferred from one

process to another with communication cost ts + twm, where

ts is the latency, or startup time for the data transfer, and tw
is the word transfer time [20].

Updating Ak in parallel: Communication occurs at three

algorithm execution points.

1) The I
pA
× R matrix W̃iA

A is computed and scattered

among the pB × pC processors of group piA,:,:, using

a reduce-scatter operation, with communication cost [20,

§4.2]

CA1 = ts (pB + pC − 2) + tw
IR

pApBpC
(pBpC − 1) .

2) Processors piA,:,: learn the updated AiA
k+1 through an all-

gather operation on its updated parts, each of dimension
I

pApBpC
×R, with communication cost [20, §4.2]

CA2 = ts (pB + pC − 2) + tw
IR

pApBpC
(pBpC − 1) .

3) Matrix AT
k+1Ak+1 is computed by using an all-reduce

operation on quantities
(
AiA

k+1

)T
AiA

k+1, for iA =
1, . . . , pA, on each single-dimensional processor group

p:,iB,iC , with communication cost [20, §4.3]

CA3 =
(
ts + twR

2
)
log2 pA. (17)

Updating Bk in parallel: Communication occurs at two

algorithm execution points.

1) The J
pB
×R matrix W̃iB

B is computed among the pA×pC
processors of group p:,iB,:, using an all-reduce operation,

with communication cost [20, §4.2]

CB1 =

(
ts + tw

J

pB
R

)
log2 (pApC) .

442

2) Matrix W̃T
BW̃B is computed by using an all-reduce op-

eration on quantities
(
W̃iB

B

)T

W̃iB
B within each single-

dimensional processor group piA,:,iC , with communica-

tion cost [20, §4.3]

CB2 =
(
ts + twR

2
)
log2 pB. (18)

The communication that takes place during the acceleration

step involves scalar quantities and, thus, is ignored.

When we are dealing with large messages, the tw terms

dominate the communication cost. Thus, if we ignore the

startup time, the total communication time, for updating Ak,

is

CA = tw

(
2IR

pA pB pC
(pBpC − 1) +R2 log2 pA

)

≈ tw

(
2IR

pA
+R2 log2 pA

)

≈ 2IR tw
pA

,

(19)

with the second approximation being accurate for R � I
pA

.

The presence of pA in the denominator of the last expression

of (19) implies that our implementation is scalable in the

sense that, if we double I , then we can have (approximately)

the same communication cost per processor by doubling pA.

Analogous results hold for the update of factor Ck.

As for the update of factor Bk, if we ignore the startup

time, the total communication time is

CB = tw

(
JR

pB
log2 (pApC) +R2 log2 pB

)

≈ tw

(
JR

pB
log2 (pApC)

) (20)

with the approximation being accurate for R � J
pB

. We

again observe that our implementation is scalable in the above

mentioned sense.

VI. NUMERICAL EXPERIMENTS

In this section, we present results obtained from the MPI

implementation described in detail in Section V. The program

is executed on a DELL PowerEdge R820 system with Sandy-

Bridge - Intel(R) Xeon(R) CPU E5 − 4650v2 (in total, 16
nodes with 40 cores each at 2.4 Gz) and 512 GB RAM per

node. The matrix operations are implemented using routines

of the C++ library Eigen [21]. We assume a noiseless tensor

X , whose true latent factors Ao and Co have i.i.d elements,

uniformly distributed in [0, 1], while true latent factor Bo was

produced from the left singular vectors of a matrix with i.i.d

elements, uniformly distributed in [0, 1].
The AO terminates at iteration k if

RFE(Ak,Bk,Ck) < 10−3,

where

RFE (A,B,C) :=
‖X − [[A,B,C]]‖F

‖X‖F
. (21)

We test the behavior of our implementation for various tensor

sizes and rank R = 15, 50, 100. The performance metric we

compute is the speedup attained using p = pA × pB × pC
processors.

In Figures 2–4, we plot the speedup for the following cases2:

1) Cubic tensor: we set I = J = K = 2000 and implement

the algorithm on a grid with pA = pB = pC = 3
√
p, for

p = 1, 8, 27, 64, 125, 216, 343.

2) Two large dimensions: we set I = 5000, J = 320, K =
5000 and implement the algorithm on a grid with pA =
pC =

√
p, pB = 1, for p = 1, 4, 9, 36, 64, 121, 225, 361.

3) One large dimension: we set I = 400, J = 50000, K =
400 and implement the algorithm on a grid with pA =
pC = 1, pB = p, for p = 1, 8, 27, 64, 125, 216, 343.

In order to highlight the need of parallel processing for the

decomposition of very large tensors, we quote the serial

execution times (p = 1) in Table I. We observe that, in all

cases, we attain significant speedup, which is rather insensitive

to the tensor shape and rank.

0 50 100 150 200 250 300 350

Number of Cores

0

50

100

150

200

250

300

350

S
p

ee
d

u
p

R = 15
R = 50
R = 100
Linear Speedup

Fig. 2. Speedup achieved for a 2000 × 2000 × 2000 tensor with p cores,
for p = 1, 8, 27, 64, 125, 216, 343.

VII. CONCLUSION

We considered the UOTF problem. We adopted the AO

framework and described in detail a parallel implementation

of the AO UOTF algorithm on a three-dimensional processor

grid. The speedup attained by the MPI implementation of

the algorithm was significant in all the cases we considered,

rendering our algorithm a strong candidate for the solution of

very large-scale dense UOTF problems.

Future work includes the development and implementation

of efficient algorithms for UOTF with further constraints, like

nonnegativity and sparsity.

2To the best of our knowledge, there is no other parallel algorithm solving
the UOTF problem, thus, we cannot compare with any competing state-of-the
art algorithm.

443

TABLE I
EXECUTION TIMES FOR p = 1 OVER DIFFERENT TENSOR SIZES AND RANKS

Size R Time of Execution (sec)
2000× 2000× 2000 15 6, 272.35

50 14744.09
100 34381.45

5000× 320× 5000 15 7, 545.13
50 17908.56
100 42628.99

400× 5000× 400 15 6, 434.69
50 17, 790.75
100 36, 599.60

0 50 100 150 200 250 300 350 400

Number of Cores

0

50

100

150

200

250

300

350

400

S
p

ee
d

u
p

R = 15
R = 50
R = 100
Linear Speedup

Fig. 3. Speedup achieved for a 5000× 320× 5000 tensor with p cores, for
p = 1, 4, 9, 36, 64, 121, 225, 361.

0 50 100 150 200 250 300 350

Number of Cores

0

50

100

150

200

250

300

350

S
p

ee
d

u
p

R = 15
R = 50
R = 100
Linear Speedup

Fig. 4. Speedup achieved for a 400× 50000× 400 tensor with p cores, for
p = 1, 8, 27, 64, 125, 216, 343.

REFERENCES

[1] P. M. Kroonenberg, Applied Multiway Data Analysis. Wiley-
Interscience, 2008.

[2] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix
and Tensor Factorizations. Wiley, 2009.

[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, September 2009.

[4] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[5] L.-H. Lim and P. Comon, “Nonnegative approximations of nonnegative
tensors,” Journal of chemometrics, vol. 23, no. 7-8, pp. 432–441, 2009.

[6] W. P. Krijnen, T. K. Dijkstra, and A. Stegeman, “On the non-existence
of optimal solutions and the occurrence of degeneracy in the cande-
comp/parafac model,” Psychometrika, vol. 73, no. 3, pp. 431–439, 2008.

[7] M. Sørensen, L. D. Lathauwer, P. Comon, S. Icart, and L. Deneire,
“Canonical polyadic decomposition with a columnwise orthonormal
factor matrix,” SIAM Journal on Matrix Analysis and Applications,
vol. 33, no. 4, pp. 1190–1213, 2012.

[8] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Ca-
iafa, and H. A. Phan, “Tensor decompositions for signal processing
applications: From two-way to multiway component analysis,” Signal
Processing Magazine, IEEE, vol. 32, no. 2, pp. 145–163, 2015.

[9] Y. Xu and W. Yin, “A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor fac-
torization and completion,” SIAM Journal on imaging sciences, vol. 6,
no. 3, pp. 1758–1789, 2013.

[10] L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data fusion.”
IEEE Journal on Selected Topics in Signal Processing, vol. 9, no. 4, pp.
586–600, 2015.

[11] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms for constrained
tensor factorization via alternating direction method of multipliers,”
IEEE Transactions on Signal Processing, vol. 63, no. 20, pp. 5450–
5463, 2015.

[12] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and
efficient framework for constrained matrix and tensor factorization,”
IEEE Transactions on Signal Processing, accepted for publication, May
2016.

[13] L. Karlsson, D. Kressner, and A. Uschmajew, “Parallel algorithms for
tensor completion in the CP format,” Parallel Computing, 2015.

[14] S. Smith and G. Karypis, “A medium-grained algorithm for distributed
sparse tensor factorization,” 30th IEEE International Parallel & Dis-
tributed Processing Symposium, 2016.

[15] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in dis-
tributed memory systems,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2015, p. 77.

[16] L. Eldén and H. Park, “A procrustes problem on the stiefel manifold,”
Numerische Mathematik, vol. 82, no. 4, pp. 599–619, 1999.

[17] R. A. Harshman and M. E. Lundy, “Parafac: Parallel factor analysis,”
Computational Statistics & Data Analysis, vol. 18, no. 1, pp. 39–72,
1994.

[18] C. A. Andersson and R. Bro, “The n-way toolbox for matlab,” Chemo-
metrics and intelligent laboratory systems, vol. 52, no. 1, pp. 1–4, 2000.

[19] A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropou-
los, “Nesterov-based alternating optimization for nonnegative tensor fac-
torization: Algorithm and parallel implementation,” IEEE Transactions
on Signal Processing, 2017.

[20] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel
Computing (2nd Edition). Pearson, 2003.

[21] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

444

